University of Florida Health brain cancer researchers have discovered a new use of stem cells that could clear a revolutionary pathway to making immunotherapy drugs effective in treating brain cancer.
“This is truly one of the more exciting developments I’ve seen in our field in many years,” said Duane Mitchell, M.D., Ph.D., co-director of the Preston A. Wells Jr. Center for Brain Tumor Therapy at the University of Florida. “This discovery gives us profound insights into the mechanisms of resistance to immunotherapy drugs, and it may offer a roadmap to use immunotherapy to effectively treat many forms of cancer.”
The findings have been published today in the journal Nature Communications.
Some tumors are able to send signals that prevent immune cells from recognizing and attacking the tumor. A new class of immunotherapy drug, called immune checkpoint inhibitors, blocks these inhibitory signals, allowing immune cells to be more effective in fighting the tumor. This treatment has been shown to be effective in treating many types of cancer, but many cancers, including brain tumors, have yet to demonstrate significant response to immune checkpoint inhibitors.
For years, Catherine Flores, Ph.D., an assistant professor in the UF College of Medicine’s Lillian S. Wells Department of Neurosurgery, has been studying mechanisms of resistance to a type of immunotherapy called “PD-1 checkpoint blockade” in rodent models of glioblastoma and medulloblastoma. Glioblastoma is the most aggressive form of adult brain cancer, with life expectancy of less than 24 months from diagnosis. Medulloblastoma, a brain tumor in the cerebellum that occurs most commonly in children, is curable in most cases, but up to 20 to 30 percent of patients succumb to recurrent disease.
>> Click here for the full article.